Home
Scholarly Works
Kinetic analysis of silicothermic process under...
Journal article

Kinetic analysis of silicothermic process under flowing argon atmosphere

Abstract

The Pidgeon process, a silicothermic reduction of calcined dolomite under vacuum, is the dominant process to make magnesium metal. Experimental data from Morsi et al., were utilised for kinetics analysis of silicothermic reduction of calcined dolomite under argon atmosphere. A number of kinetic models were assessed to evaluate the rate-controlling step in the process. The results suggest that the reaction is controlled by the solid-state diffusion of reactants with the Jander and Ginstling–Brounshtein model providing the best representation of the process kinetics. Mass transfer effects of magnesium vapour from the surface to the bulk gas phase was also analysed. These results suggest that gas–film mass transfer is not the limiting step of the kinetics. Pore diffusion through briquettes is postulated to have some effect on the kinetics but solid-state diffusion is the major rate-limiting step. Le procédé Pidgeon, une réduction silicothermique sous vide de dolomie calcinée, est le procédé dominant de production de magnésium métallique. On a utilisé les données expérimentales de Morsi et al pour l’analyse cinétique de la réduction silicothermique de dolomie calcinée sous une atmosphère d’argon. On a estimé un certain nombre de modèles cinétiques afin d’évaluer l’étape du procédé cinétiquement limitante. Les résultats suggèrent que la diffusion à l’état solide des réactants contrôle la réaction, le modèle de Jander et Ginstling-Brounshtein fournissant la meilleure représentation de la cinétique du procédé. On a également analysé les effets du transfert massique de la vapeur de magnésium de la surface vers le cœur de la phase gazeuse. Ces résultats suggèrent que le transfert de masse gaz-film n’est pas l’étape limitante de la cinétique. On postule que la diffusion par pore à travers les briquettes a un certain effet sur la cinétique mais la diffusion à l’état solide est l’étape majeure cinétiquement limitante.

Authors

Wulandari W; Brooks GA; Rhamdhani MA; Monaghan BJ

Journal

Canadian Metallurgical Quarterly, Vol. 53, No. 1, pp. 17–25

Publisher

Taylor & Francis

Publication Date

January 1, 2014

DOI

10.1179/1879139513y.0000000096

ISSN

0008-4433

Contact the Experts team