Home
Scholarly Works
Hypoxia‐induced secretion of serotonin from intact...
Journal article

Hypoxia‐induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit

Abstract

We examined the effects of hypoxia on the release of serotonin (5-HT) from intact neuroepithelial body cells (NEB), presumed airway chemoreceptors, in rabbit lung slices, using amperometry with carbon fibre microelectrodes. Under normoxia (P(O2) ~155 mmHg; 1 mmHg approximately 133 Pa), most NEB cells did not exhibit detectable secretory activity; however, hypoxia elicited a dose-dependent (P(O2) range 95-18 mmHg), tetrodotoxin (TTX)-sensitive stimulation of spike-like exocytotic events, indicative of vesicular amine release. High extracellular K(+) (50 mM) induced a secretory response similar to that elicited by severe hypoxia. Exocytosis was stimulated in normoxic NEB cells after exposure to tetraethylammonium (20 mM) or 4-aminopyridine (2 mM). Hypoxia-induced secretion was abolished by the non-specific Ca(2+) channel blocker Cd(2+) (100 microM). Secretion was also largely inhibited by the L-type Ca(2+) channel blocker nifedipine (2 microM), but not by the N-type Ca(2+) channel blocker omega-conotoxin GVIA (1 microM). The 5-HT(3) receptor blocker ICS 205 930 also inhibited secretion from NEB cells under hypoxia. These results suggest that hypoxia stimulates 5-HT secretion from intact NEBs via inhibition of K(+) channels, augmentation of Na(+)-dependent action potentials and calcium entry through L-type Ca(2+) channels, as well as by positive feedback activation of 5-HT(3) autoreceptors.

Authors

Fu XW; Nurse CA; Wong V; Cutz E

Journal

The Journal of Physiology, Vol. 539, No. 2, pp. 503–510

Publisher

Wiley

Publication Date

March 1, 2002

DOI

10.1113/jphysiol.2001.013071

ISSN

0022-3751

Contact the Experts team