Home
Scholarly Works
Approximation Schemes for Minimum Latency Problems
Journal article

Approximation Schemes for Minimum Latency Problems

Abstract

The minimum latency problem, also known as the traveling repairman problem, is a variant of the traveling salesman problem in which the starting node of the tour is given and the goal is to minimize the sum of the arrival times at the other nodes. We present a quasi-polynomial time approximation scheme (QPTAS) for this problem when the instance is a weighted tree, when the nodes lie in $\mathbb{R}^d$ for some fixed d, and for planar graphs. We also present a polynomial time constant factor approximation algorithm for the general metric case. The currently best polynomial time approximation algorithm for general metrics, due to Goemans and Kleinberg, computes a 3.59-approximation.

Authors

Arora S; Karakostas G

Journal

SIAM Journal on Computing, Vol. 32, No. 5, pp. 1317–1337

Publisher

Society for Industrial & Applied Mathematics (SIAM)

Publication Date

August 1, 2003

DOI

10.1137/s0097539701399654

ISSN

0097-5397

Contact the Experts team