Home
Scholarly Works
Density Functional Study for Homodendrimers and...
Journal article

Density Functional Study for Homodendrimers and Amphiphilic Dendrimers

Abstract

The conformation of homodendrimers and amphiphilic dendrimers in various solvents is studied using classical density functional theory (DFT), in which the excluded-volume effects are treated explicitly. For homodendrimers in an athermal solvent, DFT results predict a remarkable fold-back behavior for the outer generation of segments, supporting the dense-core model. A coil-to-globule transition is observed for homodendrimers in a poor solvent. The size of the dendrimers, characterized by the radius of gyration, ⟨Rg⟩, is found to follow the scaling relationship, ⟨Rg⟩ ∼ N(ν), where N is the total number of segments of the dendrimers. For amphiphilic dendrimers, DFT results show that chemical modification in the outermost generation is an effective method to drive the ends toward the periphery of the dendrimers. In particular, a conformation with a hollow interior structure could be formed for amphiphilic dendrimers with longer end spacers in a selective solvent. The resulting unimolecular micelles with a hollow core and dense shell could serve as a unique candidate for encapsulation applications, such as sustained-drug-release nanocontainers.

Authors

Chen C; Tang P; Qiu F; Shi A-C

Journal

The Journal of Physical Chemistry B, Vol. 120, No. 24, pp. 5553–5563

Publisher

American Chemical Society (ACS)

Publication Date

June 23, 2016

DOI

10.1021/acs.jpcb.6b03005

ISSN

1520-6106

Contact the Experts team