Home
Scholarly Works
Subwavelength waveguide grating for mode...
Journal article

Subwavelength waveguide grating for mode conversion and light coupling in integrated optics.

Abstract

We propose a new method for mode conversion and coupling between an optical fiber and a sub-micrometer waveguide using a subwavelength grating (SWG) with a period less than the 1st order Bragg period. The coupler principle is based on gradual modification of the waveguide mode effective index by the SWG effect that at the same time frustrates diffraction and minimizes reflection loss. We demonstrate the proposed principle by two-dimensional Finite Difference Time Domain (FDTD) calculations of various SWG structures designed for the silicon-on-insulator (SOI) platform with a Si core thickness of 0.3 microm. We found a coupling loss as small as 0.9 dB for a 50 microm-long SWG device and low excess loss due to fiber misalignment, namely 0.07 dB for a transverse misalignment of +/-1 microm, and 0.24 dB for an angular misalignment of +/-2 degrees. Scaling of the SWG coupler length down to 10 microm is also reported on an example of a 2D slab waveguide coupling structure including aspect ratio dependent etching and micro-loading effects. Finally, advantages of the proposed coupling principle for fabricating 3D coupling structures are discussed.

Authors

Cheben P; Xu D-X; Janz S; Densmore A

Journal

Optics Express, Vol. 14, No. 11, pp. 4695–4702

Publisher

Optica Publishing Group

Publication Date

January 1, 2006

DOI

10.1364/oe.14.004695

ISSN

1094-4087

Contact the Experts team