Home
Scholarly Works
Surface modification of MnO 2 and carbon nanotubes...
Journal article

Surface modification of MnO 2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors

Abstract

Efficient dispersion and electrophoretic deposition (EPD) of multiwalled carbon nanotubes (MWCNTs) was achieved using organic dyes, such as pyrocatechol violet (PV) and m-cresol purple (CP). The problem of MnO2 nanoparticle dispersion in concentrated suspensions was addressed by the use of PV as a dispersant. The analysis and comparison of experimental data for PV and CP provided insight into the influence of chemical structures of the dyes on their adsorption on MWCNTs and MnO2. The adsorption of PV on MWCNTs and MnO2 was attributed to π–π interactions and catecholate type bonding, respectively. The EPD yield can be varied by the variation of the PV concentration in the suspensions, deposition voltage and time. It was found that PV can be used as a co-dispersant for EPD of MWCNTs and MnO2 and the fabrication of MnO2–MWCNT composites. The proposed approach offers advantages of uniform distribution of individual components and low binder content in the composite. MnO2–MWCNT films were prepared by EPD for thin film electrodes of electrochemical supercapacitors (ES). Bulk MnO2–MWCNT electrodes with a material loading of 40 mg cm−2 were obtained by the impregnation of Ni foam current collectors. The highest specific capacitance of 5.9 F cm−2 (148 F g−1) was achieved. The composite materials are promising for ES applications.

Authors

Wang Y; Liu Y; Zhitomirsky I

Journal

Journal of Materials Chemistry A, Vol. 1, No. 40, pp. 12519–12526

Publisher

Royal Society of Chemistry (RSC)

Publication Date

October 28, 2013

DOI

10.1039/c3ta12458d

ISSN

2050-7488

Contact the Experts team