Home
Scholarly Works
Entrapment of Living Bacterial Cells in...
Journal article

Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation

Abstract

The entrapment of bacterial cells within inorganic silica materials was reported almost 20 years ago. However, almost all studies to date have shown that these entrapped cells are unable to divide and thus should be expected to have reduced promoter activity. In view of the importance of bacteria as model systems for both fundamental and applied biological studies, it is crucial that immobilized cells retain solutionlike properties, including the ability to divide and display normal promoter activity. Herein we report on a method to immobilize bacterial cells within low-density inorganic silica-based materials, where the cells retain both cell division and promoter activity. Sol–gel processing was used to entrap Escherichia coli cells carrying a variety of green fluorescent protein-linked promoters into sodium silicate-derived materials that were formed in microwell plates. Using a series of assays, we were able to demonstrate that (1) the entrapped cells can divide within the pores of the silica matrix, (2) cellular pathways are regulated in a similar manner in both solution and the sol–gel-derived materials, and (3) promoters in entrapped cells can be specifically induced with small molecules (e.g., antimicrobial compounds) in a concentration-dependent manner to allow assessment of both potency and mode of action. This solid-phase assay system was tested using multiple antimicrobial pathways and should enable the development of solid-phase assays for the discovery of new small molecules that are active against bacteria.

Authors

Eleftheriou NM; Ge X; Kolesnik J; Falconer SB; Harris RJ; Khursigara C; Brown ED; Brennan JD

Journal

Chemistry of Materials, Vol. 25, No. 23, pp. 4798–4805

Publisher

American Chemical Society (ACS)

Publication Date

December 10, 2013

DOI

10.1021/cm403198z

ISSN

0897-4756

Labels

Fields of Research (FoR)

Contact the Experts team