Home
Scholarly Works
Switching behavior of solutions of ordinary...
Journal article

Switching behavior of solutions of ordinary differential equations with abs-factorable right-hand sides

Abstract

We consider nonsmooth dynamic systems that are formulated as the unique solutions of ordinary differential equations (ODEs) with right-hand side functions that are finite compositions of analytic functions and absolute-value functions. Various non-Zenoness results are obtained for such solutions: in particular, any absolute-value function in the ODE right-hand side can only switch between its two linear pieces finitely many times on any finite duration, even when a discontinuous control input is included. These results are extended to obtain numerically verifiable necessary conditions for the emergence of “valley-tracing modes”, in which the argument of an absolute-value function is identically zero for a nonzero duration. Such valley-tracing modes can create theoretical and numerical complications during sensitivity analysis or optimization. We show that any valley-tracing mode must begin either at the initial time, or when another absolute-value function switches between its two linear pieces.

Authors

Khan KA; Barton PI

Journal

Systems & Control Letters, Vol. 84, , pp. 27–34

Publisher

Elsevier

Publication Date

August 24, 2015

DOI

10.1016/j.sysconle.2015.07.007

ISSN

0167-6911

Contact the Experts team