Journal article
A note on the van der Waerden complex
Abstract
Ehrenborg, Govindaiah, Park, and Readdy recently introduced the van der Waerden complex, a pure simplicial complex whose facets correspond to arithmetic progressions. Using techniques from combinatorial commutative algebra, we classify when these pure simplicial complexes are vertex decomposable or not Cohen-Macaulay. As a corollary, we classify the van der Waerden complexes that are shellable.
Authors
Hooper B; Van Tuyl A
Journal
Mathematica Scandinavica, Vol. 124, No. 2, pp. 179–187
Publisher
Det Kgl. Bibliotek/Royal Danish Library
DOI
10.7146/math.scand.a-111923
ISSN
0025-5521