Home
Scholarly Works
Isomorphisms of trees
Journal article

Isomorphisms of trees

Abstract

Let κ \kappa , λ \lambda be cardinals, κ 1 \kappa \geq {\aleph _1} and regular, and 2 λ κ 2 \leq \lambda \leq \kappa . If κ > 1 \kappa > {\aleph _1} and λ > κ \lambda > \kappa , and if there is a κ \kappa -Suslin ( κ \kappa -Aronszajn, κ \kappa -Kurepa) tree, then there are 2 κ {2^\kappa } normal λ \lambda -ary rigid nonisomorphic κ \kappa -Suslin ( κ \kappa -Aronszajn, κ \kappa -Kurepa) trees. If there is a Suslin (Aronszajn, Kurepa) tree, then there is a normal rigid Suslin (Aronszajn, Kurepa) tree. If there is a κ \kappa -Canadian tree, then there are 2 κ {2^\kappa } normal λ \lambda -ary rigid nonisomorphic κ \kappa -Canadian trees.

Authors

Franek F

Journal

Proceedings of the American Mathematical Society, Vol. 95, No. 1, pp. 95–100

Publisher

American Mathematical Society (AMS)

Publication Date

January 1, 1985

DOI

10.1090/s0002-9939-1985-0796454-3

ISSN

0002-9939

Contact the Experts team