Home
Scholarly Works
Reductive Degradation of Lignin and Model...
Journal article

Reductive Degradation of Lignin and Model Compounds by Hydrosilanes

Abstract

The exploitation of lignin, the second most abundant naturally occurring polymer on earth, has been hampered by its network structure, which makes it difficult to process. Hydrosilanes have previously been shown to convert aryl ethers to hydrolyzable silyl ethers in the presence of B­(C6F5)3. We demonstrate that the process is general and can be used to convert model lignin compounds to both aryl silyl ethers and alkanes. The relative reactivity of functional groups on model lignin compounds was found to be phenol > primary alcohol > methoxybenzene > alkyl silyl ethers. The process thus leads to cleavage of β-O-4, α-O-4, and methoxybenzene groups with concomitant silylation of phenolic and secondary alcohol groups. At longer time points provided sufficient silane was present, the full reduction of primary and secondary alcohols to alkyl groups was observed. Softwood lignin itself could only be partially solubilized (∼30%) even using excess hydrosilane and high catalyst loadings; the products were not characterized in detail. The lack of further degradation was attributed to its highly branched network structure containing 5-5, β-5, 4-O-5, and other linkages derived from coniferyl alcohol monomers that are not susceptible to reductive silylation. By contrast, over 95% of hardwood lignin was efficiently reduced/degraded into organosoluble products by the monofunctional hydrosilane HMe2SiOSiMe3 over a few hours at 50 °C. The molecular weight of the silylated products was consistent with oligomeric structures comprised of 3–8 linked aryl groups. This process holds promise to increase the accessibility to value-added products using lignin as a starting material.

Authors

Zhang J; Chen Y; Brook MA

Journal

ACS Sustainable Chemistry & Engineering, Vol. 2, No. 8, pp. 1983–1991

Publisher

American Chemical Society (ACS)

Publication Date

August 4, 2014

DOI

10.1021/sc500302j

ISSN

2168-0485

Contact the Experts team