Home
Scholarly Works
3D Nonlinear Inscription of Complex...
Journal article

3D Nonlinear Inscription of Complex Microcomponents (3D NSCRIPT): Printing Functional Dielectric and Metallodielectric Polymer Structures with Nonlinear Waves of Blue LED Light

Abstract

A nonclassical 3D‐printing technique, 3D NSCRIPT, which employs nonlinear blue waves from light emitting diodes (LEDs) is introduced. This technique generates micro‐ and macroscopic dielectric and metallodielectric structures with seamless depths, which would be challenging to fabricate through conventional 3D printing techniques. 3D NSCRIPT exploits divergence‐free, nonlinear self‐trapped beams elicited during epoxide polymerization to inscribe 3D structures; by embedding patterns in and varying the diameter of nonlinear beams, it is possible to control respectively the geometry and dimensions of the resulting structures. By exploiting the interactions of nonlinear beams, it is moreover possible to configure additional structural complexity. Furthermore, by coupling epoxide polymerization with the simultaneous reduction of gold salts, it is possible to generate 3D structures containing a homogeneous dispersion of Au nanoparticles. To demonstrate the versatility of this technique, various 3D components of the da Vinci catapult were fabricated and assembled into a miniature working device.

Authors

Basker DK; Cortes OAH; Brook MA; Saravanamuttu K

Journal

Advanced Materials Technologies, Vol. 2, No. 5,

Publisher

Wiley

Publication Date

May 1, 2017

DOI

10.1002/admt.201600236

ISSN

2365-709X

Labels

Contact the Experts team