Resonances in the K shell excitation spectra of benzene and pyridine: Gas phase, solid, and chemisorbed states Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • K shell excitation spectra of the aromatic molecules benzene and pyridine in the gas phase are compared to those for the solids (ices) and for monolayers chemisorbed on Pt(111). The gas phase and solid spectra are essentially identical and even the spectra for the chemisorbed molecules exhibit the same resonances. Because of the orientation of the molecules upon chemisorption the latter spectra show a strong polarization dependence as a function of x-ray incidence. This polarization dependence in conjunction with a multiple scattering Xα calculation for the benzene molecule allows us to assign the origin of all K shell resonances. The resonances are found to arise from transitions to π* antibonding orbitals and to σ* shape resonances in the continuum. The shape resonances are characterized by potential barriers in high (l=5 and 6) angular momentum states of the excited photoelectron. The polarization dependence and energy position of the resonances allow the molecular orientation on the surface to be determined and show that the change in the carbon–carbon bond length is less than 0.02 Å.

publication date

  • December 15, 1985