Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Biofeedback of trunk sway is a possible remedy for patients with balance disorders. Because these patients have a tendency to fall more in one direction, we investigated whether biofeedback has a directional effect on trunk sway during gait. Forty healthy young participants (mean age 23.1 years) performed 10 gait tasks with and without biofeedback. Combined vibrotactile, auditory and visual feedback on trunk sway in either the lateral or anterior-posterior (AP) direction was provided by a head-mounted actuator system. Trunk roll and pitch angles, calculated from trunk angular velocities measured with gyroscopes, were used to drive the feedback. A reduction in sway velocities occurred across all tasks regardless of feedback direction. Reductions in sway angles depended on the task. Generally, reductions were greater in pitch. For walking up and down stairs, or over barriers, pitch angle reductions were greater with AP than lateral feedback. For tandem and normal walking, reductions were similar in pitch and roll angles for both feedback directions. For walking while rotating or pitching the head or with eyes closed, only pitch angle was reduced for both feedback directions. These results indicate that the central nervous system is able to incorporate biofeedback of trunk sway from either the AP or lateral direction to achieve a reduction in both pitch and roll sway. Greater reductions in pitch suggest a greater ability to use this direction of trunk sway biofeedback during gait.

publication date

  • June 2009