Sonic Hedgehog is Cytoprotective against Oxidative Challenge in a Cellular Model of Amyotrophic Lateral Sclerosis Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We have previously demonstrated that primary cilia on spinal motor neurons are reduced in G93A SOD1 (mSOD) mice, a mouse model of amyotrophic lateral sclerosis (ALS). Sonic hedgehog (Shh) signaling involves the primary cilium and Shh has been shown to be cytoprotective in models of other neurodegenerative diseases. Thus, the Shh signaling pathway may bear further study in ALS. Accordingly, we established that interference with the Shh pathway (with the Shh antagonist cyclopamine or with miRNA 3245p) sensitized HT22 cells, while augmentation of the Shh pathway (with Shh or the Shh agonist purmorphamine) protected cells against hydrogen peroxide (H₂O₂) challenge. We ectopically expressed mSOD, human wild-type SOD1 (wtSOD), or an empty vector in HT22 cells. Compared to empty vector, wtSOD decreased cell death and mSOD increased cell death in response to H₂O₂ challenge. Treatment with cyclopamine or miRNA 3245p sensitized all three transfections to H₂O₂ challenge. Treatment with recombinant human Shh or purmorphamine decreased cell death after H₂O₂ challenge, an effect more pronounced in mSOD cells. Compared with empty vector, overexpression of wtSOD increased Shh and Gli transcript levels and increased activity in a Gli-responsive reporter assay. Overexpression of mSOD did not change Shh transcript levels, but decreased Gli transcript levels, especially Gli3, and reduced activity in a Gli reporter assay. These results suggest that overexpression of mSOD but not wtSOD reduces signaling in the Shh pathway and renders mSOD cells more susceptible to H₂O₂ challenge, and that treatment with Shh or Shh agonists is cytoprotective to mSOD cells. Shh or Shh agonists merit further consideration as potential therapy in ALS.

publication date

  • May 2012