Home
Scholarly Works
Neural stem cells from protein tyrosine...
Journal article

Neural stem cells from protein tyrosine phosphatase sigma knockout mice generate an altered neuronal phenotype in culture

Abstract

BackgroundThe LAR family Protein Tyrosine Phosphatase sigma (PTPσ) has been implicated in neuroendocrine and neuronal development, and shows strong expression in specific regions within the CNS, including the subventricular zone (SVZ). We established neural stem cell cultures, grown as neurospheres, from the SVZ of PTPσ knockout mice and sibling controls to determine if PTPσ influences the generation and the phenotype of the neuronal, astrocyte and oligodendrocyte cell lineages.ResultsThe neurospheres from the knockout mice acquired heterogeneous developmental characteristics and they showed similar morphological characteristics to the age matched siblings. Although Ptprs expression decreases as a function of developmental age in vivo, it remains high with the continual renewal and passage of the neurospheres. Stem cells, progenitors and differentiated neurons, astrocytes and oligodendrocytes all express the gene. While no apparent differences were observed in developing neurospheres or in the astrocytes and oligodendrocytes from the PTPσ knockout mice, the neuronal migration patterns and neurites were altered when studied in culture. In particular, neurons migrated farther from the neurosphere centers and the neurite outgrowth exceeded the length of the neuronal processes from age matched sibling controls.ConclusionOur results imply a specific role for PTPσ in the neuronal lineage, particularly in the form of inhibitory influences on neurite outgrowth, and demonstrate a role for tyrosine phosphatases in neuronal stem cell differentiation.

Authors

Kirkham DL; Pacey LK; Axford MM; Siu R; Rotin D; Doering LC

Journal

BMC Neuroscience, Vol. 7, No. 1,

Publisher

Springer Nature

Publication Date

June 19, 2006

DOI

10.1186/1471-2202-7-50

ISSN

1471-2202

Contact the Experts team