A multi-stage stochastic programming approach for network capacity expansion with multiple sources of capacity Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In networks, there are often more than one source of capacity. The capacities can be permanently or temporarily owned by the decision maker. Depending on the nature of sources, we identify the permanent capacity, spot market capacity and contract capacity. We use a scenario tree to model the uncertainty, and build a multi-stage stochastic integer program that can incorporate multiple sources and multiple types of capacities in a general network. We propose two solution methodologies for the problem. Firstly, we design an asymptotically convergent approximation algorithm. Secondly, we design a cutting plane algorithm based on Benders decomposition to find tight bounds for the problem. The numerical experiments show superb performance of the proposed algorithms compared with commercial software.

publication date

  • December 2016