Home
Scholarly Works
Species specific differences in the toxicity of...
Journal article

Species specific differences in the toxicity of mithramycin, chromomycin A3, and olivomycin towards cultured mammalian cells

Abstract

Three structurally related anticancer drugs, mithramycin, chromomycin A3, and olivomycin, showed large unexpected differences (up to more than 1000 fold) in their toxicity towards cultured cells from various species (human, Chinese hamster, Syrian hamster, and mouse). Among the cell types examined, human cells (both a diploid fibroblast cell strain and HeLa cells) were maximally sensitive to all these drugs, followed by the Syrian hamster kidney cells (BHK 21). The mouse (LMTK- cells) and Chinese hamster (CHO) cells, which were more resistant, showed interesting differences in their sensitivity towards these drugs. For example, whereas the mouse cells were more resistant to mithramycin than CHO cells, the sensitivity pattern was reversed for both chromomycin A3 and olivomycin. In cell extracts derived from human, mouse, and Chinese hamster cells RNA synthesis, which is the cellular target of these drugs, showed identical sensitivity to both mithramycin and chromomycin A3, indicating that the species specific differences in the toxicity to these drugs are at the level of cellular entry of these compounds. Based on the structures of these glycosidic antibiotics and their patterns of toxicity, it is suggested that the intracellular transport of these drugs involves specific interactions between the sugar residues on these compounds and some type of cell surface receptor(s), which differ among different cell types. Some implications of these results for toxicity studies are discussed.

Authors

Gupta RS

Journal

Journal of Cellular Physiology, Vol. 113, No. 1, pp. 11–16

Publisher

Wiley

Publication Date

January 1, 1982

DOI

10.1002/jcp.1041130104

ISSN

0021-9541

Contact the Experts team