Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales. Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The Aquificales species are presently believed to be the earliest branching lineage within Bacteria. However, the branching order of this group in different phylogenetic trees is highly variable and not resolved. In the present work, the phylogenetic placement of Aquificales was examined by means of a cladistic approach based on the shared presence or absence of definite signature sequences (consisting of conserved inserts or deletions) in many highly conserved and important proteins, e.g. RNA polymerase beta (RpoB), RNA polymerase beta (RpoC), alanyl-tRNA synthetase (AlaRS), CTP synthase, inorganic pyrophosphatase (PPase), Hsp70 and Hsp60. For this purpose, fragments of the above genes that contained the signature regions were cloned from different Aquificales species (Calderobacterium hydrogenophilum, Hydrogenobacter marinus, and Thermocrinis ruber) and the sequence data were compared with those available from all other species. The presence in Aquificales species of distinctive inserts in Hsp70 and Hsp60 that are not found in any Firmicutes, Actinobacteria, or Thermotoga-Clostridium species excluded them from these groups of Bacteria. The shared presence of prominent indels in the RpoB (>100 amino acids), RpoC (>100 amino acids) and AlaRS (4 amino acids) proteins, which are only found in the various Aquificales species, the Chlamydiae, the CFBG (Cytophaga-Flavobacteria-Bacteroides-green sulfur bacteria) group, and Proteobacteria, strongly suggests their placement within these groups of Bacteria. A specific relationship between Proteobacteria and Aquificales is suggested by the presence in inorganic pyrophosphatase of a 2-amino-acid insert that is uniquely found in these phyla. However, the Aquificales species lacked a number of other protein signatures (e.g. indels in CTP synthase and Hsp70) that are characteristic of Proteobacteria, indicating that they constitute a distinct phylum related to Proteobacteria. These results provide strong and consistent evidence that the Aquificales diverged after the branching of Firmicutes, Actinobacteria, Thermotoga, Deinococcus-Thermus, green nonsulfur bacteria, Cyanobacteria, Spirochetes, Chlamydiae, and CFBG group, but before the emergence of the Proteobacteria.

publication date

  • March 2004