Cyclic AMP regulation of endothelial cell triacylglycerol turnover, 13-hydroxyoctadecadienoic acid (13-HODE) synthesis and endothelial cell thrombogenecity Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The 15-omega-lipoxygenase enzyme in endothelial cells metabolizes endogenous linoleic acid (18:2) into 13-hydroxyoctadecadienoic acid (13-HODE) under basal conditions, i.e., in unstimulated endothelial cells. 13-HODE is thought to regulate the non-adhesivity of the endothelium, contributing to vessel wall/blood cell biocompatibility. We performed experiments, therefore, to determine the relationship between basal levels of cAMP, 13-HODE synthesis, and platelet/endothelial cell adhesion. We found that 13-HODE synthesis increased with elevated cAMP levels and that the elevated 13-HODE levels correlated with increased 18:2 turnover in the triacylglycerol pool. In contrast, neither 18:2 nor arachidonic acid (20:4) turnover in the phospholipid nor prostacyclin (PGI2) production were changed with elevated cAMP levels. Platelet/endothelial cell adhesion was inversely proportional to 13-HODE synthesis. We conclude that intracellular 13-HODE influences platelet/vessel wall interactions, is synthesized from 18:2 released from the endogenous triacylglycerol pool, and that this pathway is modulated by intracellular cAMP levels.

publication date

  • February 1990

has subject area