Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The present study examined the sensitivity of carnitine palmitoyltransferase I (CPT I) activity to its inhibitor malonyl-CoA (M-CoA), and simulated metabolic conditions of rest and exercise, in aerobically trained and untrained humans. Maximal CPT I activity was measured in mitochondria isolated from resting human skeletal muscle. Mean CPT I activity was 492.8 +/- 72.8 and 260.8 +/- 33.6 micromol. min(-1). kg wet muscle(-1) in trained and untrained subjects, respectively (pH 7.0, 37 degrees C). The sensitivity to M-CoA was greater in trained muscle; the IC(50) for M-CoA was 0.17 +/- 0.04 and 0.49 +/- 0.17 microM in trained and untrained muscle, respectively. The presence of acetyl-CoA, free coenzyme A (CoASH), and acetylcarnitine, in concentrations simulating rest and exercise conditions did not release the M-CoA-induced inhibition of CPT I activity. However, CPT I activity was reduced at pH 6.8 vs. pH 7.0 in both trained and untrained muscle in the presence of physiological concentrations of M-CoA. The results of this study indicate that aerobic training is associated with an increase in the sensitivity of CPT I to M-CoA. Accumulations of acetyl-CoA, CoASH, and acetylcarnitine do not counteract the M-CoA-induced inhibition of CPT I activity. However, small decreases in pH produce large reductions in the activity of CPT I and may contribute to the decrease in fat metabolism that occurs during moderate and intense aerobic exercise intensities.

publication date

  • March 2000