Control of gap junction formation in canine trachea by arachidonic acid metabolites Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study examined whether the synthesis of the metabolites of arachidonic acid (AA) was involved in gap junction formation by 4-aminopyridine (4-AP) treatment in vitro in canine trachealis. Studies were made of the effects on gap junction formation of putative inhibitors of the cyclooxygenase and of both this and the lipoxygenase pathway of AA metabolism and the direct effects of prostaglandins (PG) E2 and I2. The number of gap junctions of similar size was increased after brief exposure to 4-AP. After indomethacin (IDM), 4-AP treatment decreased the number of gap junctions but did not affect their size. Pretreatment with 5,8,11,14-eicosatetraynoic acid or nordihydroguiaretic acid, putative inhibitors of cyclooxygenase and lipoxygenase enzymes, inhibited both the 4-AP-induced increase and decrease in the number of gap junctions. FPL 55712, a putative antagonist of leukotriene C4, did not alter either the number or the size of gap junctions when added alone or in combination with IDM. AA alone increased the number of gap junctions, but after IDM, AA decreased the number of gap junctions compared with the controls. Incubation of trachealis strips in vitro for 30 min with PGE2 increased the number of gap junctions by about threefold along with an increase in the size of the gap junctions. Similar incubation with PGI2, however, increased the number of gap junctions by approximately 60% without any change in the size. In the course of some control experiments, an interaction between carbachol and alcohol was observed such that alcohol caused an IDM-sensitive relaxation of carbachol-induced contractions, which was not observed when serotonin was the contractile agent. These results strongly suggest that PGE2 and PGI2 increase the formation of gap junctions in canine trachealis and that these prostanoids are released by 4-AP treatment. Leukotrienes may also be inhibitory in the formation of gap junctions, but FPL 55712 did not affect either the increase or the decrease in gap junctions after 4-AP.

publication date

  • March 1986

has subject area