Muscarinic receptors on nerves and muscles in opossum esophagus muscularis mucosa Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The muscarinic receptors of muscularis mucosa have some recognition properties that suggest they resemble receptors of the M1 subtype. The nerves of these tissues also contain muscarinic receptors which inhibit tonic contractions caused by release of a substance-P-like material by field stimulation. These receptors also appear to be M1 in type as they are maximally activated by McNeil A343 as well as by carbachol (pD2, 5.5 and 7.5, respectively). They are also inhibited by pirenzepine, as well as by atropine (negative logarithms of the required dose for 50% inhibition or potentiation, 6.6-6.7 compared with 8.2-8.3). Hexahydrosiladifenidol, an antagonist selective or M2 receptors of guinea pig ileum, had a low (approximately 7.1) pA2 value for antagonism of both agonists in smooth muscle in this tissue. However, it was closer to atropine in potency with respect to potentiating tonic responses to field stimulation or to inhibiting phasic responses to field stimulation than it was to antagonizing smooth muscle contractions. Thus, atropine was about 40 times more potent than pirenzepine and 2-5 times more potent than hexahydrosilafenidol. There were some quantitative differences in the effectiveness of these three antagonists in blocking the phasic (acetylcholine-mediated) response to field stimulation. Atropine was 70-100 times more potent than pirenzepine and 8-25 times more potent than hexahydrosiladifenidol. This greater potency difference for inhibition of phasic contractions compared with potentiation of tonic contractions was discussed. This tissue appears to be one of the first smooth muscles in which both nerves and muscles contain muscarinic receptors with some recognition properties resembling those of the M1 subtype.

publication date

  • September 1987