Surface analysis methods for characterizing polymeric biomaterials Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Surface properties have an enormous effect on the success or failure of a biomaterial device, thus signifying the considerable importance of and the need for adequate characterization of the biomaterial surface. Microscopy techniques used in the analysis of biomaterial surfaces include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and confocal microscopy. Spectroscopic techniques include X-ray photoelectron spectroscopy, Fourier Transform infrared attenuated total reflection and secondary ion mass spectrometry. The measurement of contact angles, although one of the earlier techniques developed remains a very useful tool in the evaluation of surface hydrophobicity/hydrophilicity. This paper provides a brief, easy to understand synopsis of these and other techniques including emerging techniques, which are proving useful in the analysis of the surface properties of polymeric biomaterials. Cautionary statements have been made, numerous authors referenced and examples used to show the specific type of information that can be acquired from the different techniques used in the characterization of polymeric biomaterials surfaces.

publication date

  • January 2002

has subject area