The Competing Effects of Hyaluronic and Methacrylic Acid in Model Contact Lenses Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The aim of this study was to determine the influence of hyaluronic acid (HA) on lysozyme sorption in model contact lenses containing varying amounts of methacrylic acid (MAA). One model conventional hydrogel (poly(2-hydroxyethyl methacrylate) (pHEMA)) and two model silicone hydrogels (pHEMA, methacryloxypropyltris(trimethylsiloxy)silane (pHEMA TRIS) and N,N-dimethylacrylamide, TRIS (DMAA TRIS)) lens materials were prepared with and without MAA at two different concentrations (1.7 and 5%). HA, along with dendrimers, was loaded into these model contact lens materials and then cross-linked with 1-ethyl-3-(3-dimethylamino propyl)-carbodiimide (EDC). Equilibrium water content (EWC), advancing water contact angle and lysozyme sorption on these lens materials were investigated. In the HA-containing materials, the presence (P < 0.05) and amount (P < 0.05) of MAA increased the EWC of the materials. For most materials, addition of MAA reduced the advancing contact angles (P < 0.05) and for all the materials, the addition of HA further improved hydrophilicity (P < 0.05). For the non-HA containing hydrogels, the presence (P < 0.05) and amount (P < 0.05) of MAA increased lysozyme sorption. The presence of HA decreased lysozyme sorption for all materials (P < 0.05). MAA appears to work synergistically with HA to increase the EWC in addition to improving the hydrophilicity of model pHEMA-based and silicone hydrogel contact lens materials. Hydrogel materials that contain HA have tremendous potential as hydrophilic, protein-resistant contact lens materials.

publication date

  • January 1, 2012