Cell-adhesive thermogelling PNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasive retinal therapeutics Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Copolymers of N-isopropylacrylamide (NIPAAm) and acrylic acid N-hydroxysuccinimide (NAS) were synthesized via free radical polymerization and conjugated with amine-functionalized hyaluronic acid (HA) and cell adhesive RGDS peptides. These novel copolymers were designed to facilitate noninvasive delivery of a liquid suspension of cells into the delicate subretinal space for treatment of retinal degenerative diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. The various synthesized copolymers all displayed subphysiological phase transition temperatures, thereby allowing temperature-induced scaffold formation and subsequent entrapment of transplanted cells within an adhesive support matrix. Successful grafting of HA and RGDS peptides were confirmed with Fourier Transform Infrared (FTIR) spectroscopy and quantified with (1)H Nuclear Magnetic Resonance (NMR) spectroscopy. All copolymers demonstrated excellent compatibility with retinal pigment epithelial (RPE) cells in culture and minimal host response was observed following subcutaneous implantation into hairless SKH1-E mice (strain code 447).

publication date

  • July 2012