AHubble Space TelescopeSurvey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The extensive grid of numerical simulations of nova eruptions of Yaron et al.(2005) first predicted that some classical novae might deviate significantly from the Maximum Magnitude - Rate of Decline (MMRD) relation, which purports to characterise novae as standard candles. Kasliwal et al. (2011) have announced the observational detection of an apparently new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, exactly as predicted by Yaron et al. (2005). Shara et al. (2016) recently reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of nova simulations of Yaron et al. (2005) to identify the underlying causes of the existence of faint, fast novae. These are systems which have accreted, and can thus eject, only very low mass envelopes, of order 10^-7 - 10^-8 Msun, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae which display decline times t2 as short as five hours. We outline a strategy for their future detection.

authors

  • Shara, Michael M
  • Doyle, Trisha
  • Lauer, Tod R
  • Zurek, David
  • Baltz, Edward A
  • Kovetz, Attay
  • Madrid, Juan P
  • Mikołajewska, Joanna
  • Neill, JD
  • Prialnik, Dina
  • Welch, Douglas L
  • Yaron, Ofer

publication date

  • April 20, 2017