A numerical study of the effect of normal stresses and elongational viscosity on entry vortex growth and extrudate swell Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractA general‐purpose finite element program has been used to simulate the flow of a typical polystyrene melt in the entry and exit regions of a slit die. Instead of using a general viscoelastic constitutive equation, simplified models were used that include correlations based on experimental data available in the literature for the shear and elongational viscosities and the normal stresses. With such simple models convergence of the iterative scheme is extended to relatively high Deborah numbers (De ≈ 5). The models predict vortex growth in the entry region and an increase of extrudate swell at the exit in qualitative agreement with experimental observations. It was found that the normal stresses are primarily responsible for these phenomena, while the elongational viscosity tends to increase the end (Bagley) correction and decrease the swelling.

publication date

  • August 1985