Chemical Evolution and the Evolutionary Definition of Life Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Darwinian evolution requires a mechanism for generation of diversity in a population, and selective differences between individuals that influence reproduction. In biology, diversity is generated by mutations and selective differences arise because of the encoded functions of the sequences (e.g., ribozymes or proteins). Here, I draw attention to a process that I will call chemical evolution, in which the diversity is generated by random chemical synthesis instead of (or in addition to) mutation, and selection acts on physicochemical properties, such as hydrolysis, photolysis, solubility, or surface binding. Chemical evolution applies to short oligonucleotides that can be generated by random polymerization, as well as by template-directed replication, and which may be too short to encode a specific function. Chemical evolution is an important stage on the pathway to life, between the stage of "just chemistry" and the stage of full biological evolution. A mathematical model is presented here that illustrates the differences between these three stages. Chemical evolution leads to much larger differences in molecular concentrations than can be achieved by selection without replication. However, chemical evolution is not open-ended, unlike biological evolution. The ability to undergo Darwinian evolution is often considered to be a defining feature of life. Here, I argue that chemical evolution, although Darwinian, does not quite constitute life, and that a good place to put the conceptual boundary between non-life and life is between chemical and biological evolution.

publication date

  • June 2017