Elastase-mediated fibrinogenolysis by chemoattractant-stimulated neutrophils occurs in the presence of physiologic concentrations of antiproteinases. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Plasma levels of the HNE-derived fibrinopeptide A alpha 1-21 reflect in vivo enzyme activity. To provide a possible explanation for the presence of circulating A alpha 1-21 in individuals with normal plasma antiproteinase concentrations we investigated whether PMN-associated HNE is more resistant to inhibition than the free enzyme. PMN were stimulated to migrate across 125I-fibrinogen-coated nitrocellulose filters in response to 10(-7) M FMLP, and the extent of fibrinogenolysis was determined by measuring release of A alpha 1-21 and 125I-labeled fibrinogen degradation products. The fibrinogenolytic activity of migrating PMN was then compared with that of free HNE present in PMN lysates or secreted by PMN stimulated with FMLP. Whereas the fibrinogenolytic activity of soluble HNE was completely inhibited by low concentrations (1%) of plasma or serum and macromolecular antiproteinase (alpha 1 proteinase-inhibitor and soybean trypsin-inhibitor), even in the presence of undiluted plasma or serum the activity of the migrating PMN was incompletely blocked (81-85%). Further, concentrations of alpha 1 proteinase-inhibitor and soybean trypsin-inhibitor that totally inhibited free HNE activity also incompletely blocked (88-89%) the fibrinogenolytic activity of migrating PMN, indicating that FMLP-stimulated PMN demonstrate significant fibrinogenolytic activity in the presence of antiproteinases as small as 20,000 mol wt. A specific low molecular weight HNE inhibitor (MeO-Suc-Ala2-Pro-ValCH2Cl), however, totally blocked PMN-mediated fibrinogenolysis without affecting intracellular HNE activity, HNE secretion from PMN, or PMN migration in response to FMLP. These findings support the hypothesis that PMN migrating on a fibrinogen-coated surface form zones of close contact with fibrinogen, thus preventing access of plasma antiproteinases to HNE released at the cell-substrate interface. The occurrence of this phenomenon in vivo would explain the presence of circulating A alpha 1-21 in individuals with normal antiproteinase concentrations.

authors

publication date

  • December 1, 1987