Effects of glutamate, substance P and eledoisin-related peptide on solitary tract neurones involved in respiration and respiratory reflexes
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Recent studies have implicated glutamate and substance P in synaptic transmission in the nuclei tractus solitarii and in central regulation of cardiorespiratory functions. Consequently, in chloralose-anaesthetized cats that were artificially ventilated, we examined the effects of the microiontophoretic application of both chemicals (and the substance P homologue, eledoisin-related peptide) on single neurones of the nuclei tractus solitarii implicated in the control of respiration and respiratory tract reflexes. These neurones were functionally identified as either respiratory neurones or presumed reflex interneurones, and showed functional properties comparable to those previously documented for each of these two types. The iontophoretic application of glutamate produced an excitation of rapid onset in 23 or 25 reflex interneurones tested, but the respiratory neurones showed a differential sensitivity: one type (n = 32) was "glutamate-sensitive" and showed rapid excitation with glutamate applications of less than 30 nA, the other type of respiratory neurone (n = 26) was termed "glutamate-insensitive" since it either showed excitation only with applications of 60 nA or more or showed no response even with currents up to 94 nA. Each neurone studied was clearly of one type or the other. Glutamate could increase the number of spikes per rhythmic burst and the burst duration of respiratory neurones, it facilitated evoked activity in the reflex interneurones and in those respiratory neurones having a superior laryngeal nerve or vagus nerve afferent input, and the magnitude of the excitatory responses to glutamate varied directly with the amount of ejecting current. Substance P and eledoisin-related peptide also had excitatory effects on respiratory neurones and reflex interneurones, but compared with glutamate-induced effects the excitation was slower in onset and more prolonged in after-discharge. Both rhythmic and evoked activity could be facilitated, and the magnitude of the effect varied directly with the magnitude of the ejecting current. In showing that both glutamate and substance P (and its analogue, eledoisin-related peptide) have excitatory effects on the activity of respiratory neurones and reflex interneurones, this study provides evidence suggesting that these neurones have receptors for these neural chemicals, supportive of a role for each chemical in the regulation of respiration and respiratory tract reflexes.