Synthetic polymer surfaces require surface modification to improve biocompatibility. A generic route to biocompatible silicone elastomers is described involving high yield surface functionalization of standard silicones with hydrosilanes, hydrosilylation using asymmetric, allyl-, NSC-terminated PEO of narrow molecular weight, and covalent modification in one step with amine-containing biological molecules including oligopeptides (YIGSR, RGDS), proteins (EGF, albumin, fibrinogen, mucin), and glycosaminoglycans (heparin). Efficient, high-density binding (e.g., 0.2 EGF molecules/nm2) was demonstrated using radiolabeling studies. The resulting surfaces were demonstrated to be biocompatible by further reaction with biomolecules, for example, thrombosis suppression on surfaces modified by heparin + ATIII, and the formation of confluent corneal epithelial cell layers on EGF, RGDS, or YIGSR surfaces.