abstract
- The impressive surface activity of silicones can be enhanced by the incorporation of hydrophilic organic functional groups and polymers. Traditional routes to such compounds, which typically involve platinum-catalyzed hydrosilylation, suffer from incompatibility with certain functional groups. B(C(6)F(5))(3)-catalyzed condensation of hydrosilanes with alkoxysilanes offers new opportunities to prepare explicit silicone structures. We demonstrate here that conversion of alcohols to silyl ethers competes unproductively with alkoxysilane conversion to disiloxanes. By contrast, a wide range of structurally complex alkyl halide and oligovinyl compounds can be readily made in high yield. Thermal 3+2-cycloadditions and thiol-ene click reactions are used to convert these compounds into surface active materials.