Home
Scholarly Works
The chirplet transform: physical considerations
Journal article

The chirplet transform: physical considerations

Abstract

We consider a multidimensional parameter space formed by inner products of a parameterizable family of chirp functions with a signal under analysis. We propose the use of quadratic chirp functions (which we will call q-chirps for short), giving rise to a parameter space that includes both the time-frequency plane and the time-scale plane as 2-D subspaces. The parameter space contains a "time-frequency-scale volume" and thus encompasses both the short-time Fourier transform (as a slice along the time and frequency axes) and the wavelet transform (as a slice along the time and scale axes). In addition to time, frequency, and scale, there are two other coordinate axes within this transform space: shear in time (obtained through convolution with a q-chirp) and shear in frequency (obtained through multiplication by a q-chirp). Signals in this multidimensional space can be obtained by a new transform, which we call the "q-chirplet transform" or simply the "chirplet transform". The proposed chirplets are generalizations of wavelets related to each other by 2-D affine coordinate transformations (translations, dilations, rotations, and shears) in the time-frequency plane, as opposed to wavelets, which are related to each other by 1-D affine coordinate transformations (translations and dilations) in the time domain only.

Authors

Mann S; Haykin S

Journal

IEEE Transactions on Signal Processing, Vol. 43, No. 11, pp. 2745–2761

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

January 1, 1995

DOI

10.1109/78.482123

ISSN

1053-587X

Labels

Contact the Experts team