Glycogenin protein and mRNA expression in response to changing glycogen concentration in exercise and recovery Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Glycogenin (GN-1) is essential for the formation of a glycogen granule; however, rarely has it been studied when glycogen concentration changes in exercise and recovery. It is unclear whether GN-1 is degraded or is liberated and exists as apoprotein (apo)-GN-1 (unglycosylated). To examine this, we measured GN-1 protein and mRNA level at rest, at exhaustion (EXH), and during 5 h of recovery in which the rate of glycogen restoration was influenced by carbohydrate (CHO) provision. Ten males cycled (65% V̇o2 max) to volitional EXH (117.8 ± 4.2 min) on two separate occasions. Subjects were administered carbohydrate (CHO; 1 g·kg−1·h−1 Gatorlode) or water [placebo (PL)] during 5 h of recovery. Muscle biopsies were taken at rest, at EXH, and following 30, 60, 120, and 300 min of recovery. At EXH, total glycogen concentration was reduced ( P < 0.05). However, GN-1 protein and mRNA content did not change. By 5 h of recovery, glycogen was resynthesized to ∼60% of rest in the CHO trial and remained unchanged in the PL trial. GN-1 protein and mRNA level did not increase during recovery in either trial. We observed modest amounts of apo-GN-1 at EXH, suggesting complete degradation of some granules. These data suggest that GN-1 is conserved, possibly as very small, or nascent, granules when glycogen concentration is low. This would provide the ability to rapidly restore glycogen during early recovery.

publication date

  • June 2007