Home
Scholarly Works
Quasielastic electron scattering from methane,...
Journal article

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane

Abstract

Quasielastic electron scattering from gaseous species at high momentum transfer was recently reported for the first time [Cooper et al., J. Electron Spectrosc. Relat. Phenom. 155, 28 (2007)]. The first results for CH(4) and CD(4) were well explained by a classical electron Compton scattering picture in which the electron scatters independently from each atom rather than the molecule as a whole. However, an alternative possible interpretation in terms of nondipole molecular vibrational excitation is suggested by previously published quantum mechanical calculations on high momentum transfer electron scattering from diatomic molecules [Bonham and de Souza, J. Chem. Phys. 79, 134 (1983)]. In order to determine which of these two interpretations best fits the experimental results, we have measured the quasielastic spectra of gaseous 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH(2)D(2) and CD(4), at a momentum transfer of approximately 20 a.u. (2.25 keV impact energy and 100 degrees scattering angle). The experimental spectra are found to be composed of as many peaks as there are different atomic isotopes in the molecule (two for CH(4), C(2)H(4), 2-methylpropane, and CD(4) and three for CH(2)D(2)). The peak positions are predicted accurately by the independent atom electron Compton scattering model, and the relative intensities are in reasonable agreement. The experimental results thus support classical electron Compton scattering as the origin of the signal.

Authors

Cooper G; Christensen E; Hitchcock AP

Journal

The Journal of Chemical Physics, Vol. 127, No. 8,

Publisher

AIP Publishing

Publication Date

August 28, 2007

DOI

10.1063/1.2772275

ISSN

0021-9606

Contact the Experts team