Quark-Novae Ia in the Hubble diagram: implications for dark energy Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The accelerated expansion of the Universe was proposed through the use of Type-Ia SNe as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type Ia SN as standard candles rests on the assumption that their properties (and this correlation) do not vary with red-shift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system; a Quark-Nova Ia. The spin-down energy injected by the Quark Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing Quark-Novae Ia are NOT constant in red-shift. Simulated Quark-Nova Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We determine a correction between the true and fitted distance moduli which when applied to Type-Ia SNe in the Hubble diagram recovers the Omega_M = 1 cosmology. We conclude that Type-Ia SNe observations do not necessitate the need for an accelerating expansion of the Universe (if the observed SNe-Ia are dominated by QNe-Ia) and by association the need for Dark Energy.

publication date

  • May 2014