Increased medial smooth muscle cell length is responsible for vascular hypertrophy in young hypertensive rats Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Large mesenteric arteries from 3- to 4-wk-old spontaneously hypertensive rats (SHR) showed medial hypertrophy and an increased contractile response to various agonists before significant blood pressure increase. Here we determined the cellular nature of this vascular hypertrophy. Large mesenteric arteries from SHR and Wistar-Kyoto (WKY) rats were fixed at maximal relaxation either with an in situ perfusion fixation or an in vitro fixation method. With the use of morphometric protocols and confocal microscopy, the volume of the medial wall and lumen, numerical density of smooth muscle cell nuclei in the medial layer, and smooth muscle cell and nuclear length were measured. Both methods of fixation yielded similar results, showing significant medial volume expansion in SHR than WKY without lumen change. Numerical density of medial smooth muscle cells was significantly less in SHR than WKY, and their total number per 100 μm length were similar between the strains. Average smooth muscle nuclear and cell length from SHR was significantly longer than that of WKY. Regression analysis showed that the increase in smooth muscle cell length explained 80% of the medial volume increase. We concluded that increased smooth muscle cell length in prehypertensive SHR is responsible for increased medial volume in the mesenteric arteries.

publication date

  • November 1, 2000