Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The gastric pathogen helicobacter pylori is one of a number of bacteria which bind specifically to gangliotetraosylceramide, gangliotriaosylceramide, and phosphatidylethanolamine in vitro at neutral pH. Since this organism encounters an acid pH during initial infection of the stomach, we have monitored the effect of pH on receptor binding specificity and found induction of specific binding to sulfoglycolipids (sulfatide) following brief treatment at low pH. We have previously shown that heat shock proteins (hsps) bind to sulfatide, and the suspicion that this was a stress-induced response is supported by the fact that a similar change in H. pylori binding specificity was observed if the organisms were briefly exposed to heat shock treatment. Following the stress stimulus, the change in glycolipid binding specificity was prevented by the inclusion of inhibitors of protein synthesis or by incubation with anti-hsp antibodies. Expression of hsps in the surface extract and surface reactivity with anti-hsp antibodies correlated with the change in glycolipid binding specificity. Despite the presence of high levels of H. pylori cell surface urease activity which may neutralize the microenvironmental pH, the acid-induced change in binding specificity was enhanced in the presence of urea. These studies suggest that cell surface hsps mediate sulfatide recognition by this organism under stress conditions. A binary receptor model is proposed for gastric colonization by H. pylori.

publication date

  • July 1996

has subject area