pH Responsivity and Micelle Formation of Gradient Copolymers of Methacrylic Acid and Methyl Methacrylate in Aqueous Solution
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
A series of gradient copolymers of methacrylic acid (MAA)/methyl methacrylate (MMA) with four end-to-end composition profiles (uniform, linear gradient, triblock with linear gradient midblock, and diblock) but all having an average chain composition of ̅F(MMA) ≈ 0.5 and an average chain length of 200 were synthesized via model-based, computer-programmed, semibatch atom-transfer radical copolymerization (ATRcoP). These samples allowed us to investigate systematically the effects of the gradient composition profile on the pH responsivity and micelle formation of the copolymers in an aqueous solution. Measurements included light transmittance, TEM, AFM, DLS, (1)H NMR, and pH titration. It was found that linear gradient, triblock, and diblock copolymers formed spherical micelles at high pH. The micelles of the linear gradient copolymer contained MMA units in their hydrophilic shells, and those of the triblock and diblock copolymers had all of their MMA units residing in their cores. The composition profile showed a strong effect on the degree of acid dissociation at a given pH. The conformational transition of the copolymer chains was determined by both the pH value and composition profile. Copolymers having sharper gradients required a lower pH to trigger the conformational transition and a narrower pH range to complete the transition.