In vivo study of halothane hepatotoxicity in the rat using magnetic resonance imaging and 31P spectroscopy. Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Using magnetic resonance imaging (MRI) and spectroscopy (MRS), in vivo halothane hepatotoxicity was assessed in male Wistar rats. With 1.5% halothane in 100 or 20% O2, an edematous region, characterized by increased intensity on T2 weighted images and an increase in regional tissue water content (rho water), was seen proximal to the hepatic portal vein in the liver. Both spin-lattice relaxation (T1) and spin-spin relaxation (T2) increased in this region, relative to distal regions of the liver. Similarly, a high signal intensity on proton density weighted images was observed in this area. As halothane anaesthesia progressed, a decrease in the adenosine triphosphate-inorganic phosphate ratio (ATP/Pi) and an increase in the phosphomonoester-phosphodiester (PME/PDE) ratio was detected in the liver. In addition, intracellular pH decreased and intracellular free magnesium concentration [Mg2+] increased with time of exposure. Excessive vacuolation, ribosomal disappearance from rough endoplasmic reticulum, mitochondrial swelling and fragmentation of smooth endoplasmic reticulum were observed by transmission electron microscopy (TEM) in samples from the edematous region of the liver.

publication date

  • March 1997