Leptin Enhances Oocyte Nuclear and Cytoplasmic Maturation via the Mitogen-Activated Protein Kinase Pathway Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Recent studies have suggested that leptin has a central role in female reproduction, including ovarian function. The leptin receptor (Ob-R) has six isoforms and can signal through either the MAPK or the Janus-activated kinase/signal transducer and activator of transcription signal-transduction pathway, depending on the isoform. Expression of Ob-R has been reported in human and mouse oocytes; however, the physiological role of leptin during follicular development and oocyte maturation is largely unknown. In the current study, expression of Ob-R during oocyte growth and maturation was investigated in porcine oocytes from small, medium, and large follicles and in oocytes in the germinal vesicle (GV), GV breakdown, and metaphase II (MII) stages at both the mRNA and protein levels. The proportion of oocytes expressing Ob-R was maximal in oocytes from medium follicles and at the GV breakdown stage (P < 0.05), whereas the proportion of oocytes expressing the long isoform, Ob-Rb, was found to be consistently low throughout growth and maturation. When included in oocyte maturation medium, leptin significantly increased the proportion of oocytes reaching MII (P < 0.01), elevated cyclin B1 protein content in MII-stage oocytes (P < 0.05), and enhanced embryo developmental potential (P < 0.05), suggesting that leptin plays a role in both nuclear and cytoplasmic maturation. During oocyte maturation, leptin increased phosphorylated MAPK content by 2.8-fold (P < 0.05), and leptin-stimulated oocyte maturation was blocked when leptin-induced MAPK phosphorylation was suppressed by a specific MAPK activation inhibitor, U0126 (P < 0.01), demonstrating that leptin enhances nuclear maturation via activation of the MAPK pathway.

authors

publication date

  • November 2004