Home
Scholarly Works
Modal identification of machine tool spindle units...
Journal article

Modal identification of machine tool spindle units by output only operational modal analysis

Abstract

Accurate tracking of modal characteristics is a valuable diagnostic tool for condition monitoring of machine tool spindle units. While experimental modal analysis (EMA) is the conventional method used for machine tool modal identification, it is often impractical to implement in production settings due to the invasive and manual nature of the impact hammer test. In this study, a new technique for operational modal analysis (OMA) based on output-only vibration measurements obtained during a milling operation with variable spindle speed is proposed. Modal identification is performed using two OMA standard methods, namely stochastic subspace identification (SSI) and frequency domain decomposition (FDD). The modal characteristics are compared to values obtained from conventional EMA from impulse hammer testing on the static spindle, and from the operational spindle during cutting using force measurements collected by a table dynamometer. The percentage difference between the natural frequencies identified by the proposed OMA method and frequencies identified by conventional impulse hammer testing was less than 10%, and for the operational spindle during cutting tests, the difference was less than 3%. These results demonstrate the validity of a new modal identification method that can be practically implemented in production.

Authors

Chin P; Veldhuis SC

Journal

The International Journal of Advanced Manufacturing Technology, Vol. 139, No. 9-10, pp. 5043–5056

Publisher

Springer Nature

Publication Date

August 1, 2025

DOI

10.1007/s00170-025-16195-2

ISSN

0268-3768

Contact the Experts team