Home
Scholarly Works
Fiber Formation from Silk Fibroin Using...
Journal article

Fiber Formation from Silk Fibroin Using Pressurized Gyration

Abstract

Abstract Silk has attracted considerable interest for use in biomedical applications due to its high strength and promising biocompatibility. Degummed silk, consisting only of silk fibroin (SF), has been processed using various methods and can be made into films, sponges, and fibers. Pressurized gyration (PG) is capable of rapidly producing aligned fibers and offers a great amount of control over their structure and morphology. Here, SF fibers are produced for the first time using PG. The effect of varying SF concentration and applied working pressure to the gyration vessel is reported, along with the resulting effect on fiber diameter, morphology, and structural composition. Aligned microfibers are found at concentrations of 8, 10, 12 w/v%, with the lowest fiber diameters reported at 8 w/v% SF 0.3 MPa applied pressure (2.1 ± 1.3 µm). Fourier‐transform infrared spectroscopy (FTIR) confirms the existence of PG spun fibers in both random coil and β‐sheet formations.

Authors

Heseltine PL; Hosken J; Agboh C; Farrar D; Homer‐Vanniasinkam S; Edirisinghe M

Journal

Macromolecular Materials and Engineering, Vol. 304, No. 1,

Publisher

Wiley

Publication Date

January 1, 2019

DOI

10.1002/mame.201800577

ISSN

1438-7492
View published work (Non-McMaster Users)

Contact the Experts team