Home
Scholarly Works
Microstructure Evolution of Cold-Rolled...
Journal article

Microstructure Evolution of Cold-Rolled Carbide-Free Bainite Steel Sheets During Continuous Annealing Process

Abstract

A modified carbide-free bainite (CFB) steel has been developed, building on existing alloys for compatibility with commercial continuous annealing lines (CALs), featuring a low austenitization temperature and short overaging time. The microstructural features of such candidate CFB sheets are compared with those of conventional CFB steel sheets that require higher reheating temperatures and longer overaging times. The effects of annealing parameters such as reheating temperatures and overaging temperatures on phase transformation kinetics and microstructure evolution are presented. The annealing process was simulated in a Gleeble thermomechanical processing simulator, and the microstructural characterization was carried out using XRD, SEM, and EBSD. Reconstruction of parent austenite grains from EBSD data did not reveal any variant selection, regardless of changes in the austenitization temperature, overaging temperature, or carbon content. It was observed that the V1–V2 variant pairing is the most common at the lower overaging temperature for reheating at 950 °C; however, this pairing decreases as the isothermal overaging temperature increases, with variant pairings involving low misorientation boundaries—such as V1–V4 and V1–V8—becoming more frequent. Steels with higher carbon content exhibit no significant changes in their variant pairing, regardless of variations in the austenitizing or isothermal temperatures. The XRD results show that the retained austenite fraction is reduced by increasing the isothermal transformation temperature.

Authors

Mobedpour B; Fazeli F; Zurob H

Journal

Metals, Vol. 15, No. 2,

Publisher

MDPI

Publication Date

February 1, 2025

DOI

10.3390/met15020125

ISSN

2075-4701

Contact the Experts team