Home
Scholarly Works
Improved thermal stabilization of VSV-vector with...
Journal article

Improved thermal stabilization of VSV-vector with enhanced vacuum drying in pullulan and trehalose-based films

Abstract

One major limitation of effective vaccine delivery is its dependency on a robust cold chain infrastructure. While Vesicular stomatitis virus (VSV) has been demonstrated to be an effective viral vaccine vector for diseases including Ebola, its −70 °C storage requirement is a significant limitation for accessing disadvantaged locations and populations. Previous work has shown thermal stabilization of viral vaccines with a combination of pullulan and trehalose (PT) dried films. To improve the thermal stability of VSV, we optimized PT formulation concentrations and components, as well as drying methodology with enhanced vacuum drying. When formulated in PT films, VSV can be stored for 32 weeks at 4 °C with less than 2 log PFU loss, at 25 °C with 2.5 log PFU loss, and at 37 °C with 3.1 log PFU loss. These results demonstrate a significant advancement in VSV thermal stabilization, decreasing the cold chain requirements for VSV vectored vaccines.

Authors

Iwashkiw JA; Mohamud AO; Kazhdan N; Ameen A; Beecher JE; Filipe CDM; Lichty BD

Journal

Scientific Reports, Vol. 14, No. 1,

Publisher

Springer Nature

Publication Date

December 1, 2024

DOI

10.1038/s41598-024-69003-4

ISSN

2045-2322

Contact the Experts team