Creating semiclassical black holes in collider experiments and keeping them on a string
Abstract
We argue that a simple modification of the TeV scale quantum gravity scenario
allows production of semiclassical black holes in particle collisions at the
LHC. The key idea is that in models with large extra dimensions the strength of
gravity in the bulk can be higher than on the brane where we live. A well-known
example of this situation is the case of warped extra dimensions. Even if the
energy of the collision is not sufficient to create a black hole on the brane,
it may be enough to produce a particle which accelerates into the bulk up to
trans-Planckian energy and creates a large black hole there. In a concrete
model we consider, the black hole is formed in a collision of the particle with
its own image at an orbifold plane. When the particle in question carries some
Standard Model gauge charges the created black hole gets attached to our brane
by a string of the gauge flux. For a 4-dimensional observer such system looks
as a long-lived charged state with the mass continuously decreasing due to
Hawking evaporation of the black hole. This provides a distinctive signature of
black hole formation in our scenario.