Home
Scholarly Works
Weak gravitational lensing in the standard Cold...
Preprint

Weak gravitational lensing in the standard Cold Dark Matter model, using an algorithm for three-dimensional shear

Abstract

We investigate the effects of weak gravitational lensing in the standard Cold Dark Matter cosmology, using an algorithm which evaluates the shear in three dimensions. The algorithm has the advantage of variable softening for the particles, and our method allows the appropriate angular diameter distances to be applied to every evaluation location within each three-dimensional simulation box. We investigate the importance of shear in the distance-redshift relation, and find it to be very small. We also establish clearly defined values for the smoothness parameter in the relation, finding its value to be at least 0.88 at all redshifts in our simulations. From our results, obtained by linking the simulation boxes back to source redshifts of 4, we are able to observe the formation of structure in terms of the computed shear, and also note that the major contributions to the shear come from a very broad range of redshifts. We show the probability distributions for the magnification, source ellipticity and convergence, and also describe the relationships amongst these quantities for a range of source redshifts. We find a broad range of magnifications and ellipticities; for sources at a redshift of 4, 97{1/2}% of all lines of sight show magnifications up to 1.3 and ellipticities up to 0.195. There is clear evidence that the magnification is not linear in the convergence, as might be expected for weak lensing, but contains contributions from higher order terms in both the convergence and the shear.

Authors

Barber AJ; Thomas PA; Couchman HMP

Publication date

January 12, 1999

DOI

10.48550/arxiv.astro-ph/9901143

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team