Greenhouses represent an important evolutionary niche for Alternaria alternata Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • ABSTRACT Alternaria alternata is a ubiquitous soil-borne fungus capable of causing diseases in a variety of plants and occasionally in humans. While populations of A. alternata from infected plants have received significant attention, relatively little is known about its soil populations, including its population genetic structure and antifungal susceptibilities. In addition, over the last two decades, greenhouses have become increasingly important for food and ornamental plant production throughout the world, but how greenhouses might impact microbial pathogens such as A. alternata populations remains largely unknown. Different from open crop fields, greenhouses are often more intensively cultivated, with each greenhouse being a relatively small and isolated space where temperature and humidity are higher than surrounding environments. Previous studies have shown that greenhouse populations of two common molds, Aspergillus fumigatus and A. alternata, within a small community in southwestern China were variably differentiated. However, the relative contribution of physical separation among local greenhouses to the large-scale population structure remains unknown. Here, we isolated strains of A. alternata from seven greenhouses in Shijiazhuang, northeast China. Their genetic diversity and triazole susceptibilities were analyzed and compared with each other and with 242 isolates from nine greenhouses in Kunming, southwest China. Results showed that the isolation of greenhouses located <1 km from each other locally contributed similarly to the overall genetic variation as that between the two distant geographic regions. In addition, our results indicate that greenhouses could be significant sources of triazole resistance, with greenhouses often differing in their frequencies of resistant strains to different triazoles. IMPORTANCE Greenhouses have become increasingly important for food production and food security. However, our understanding of how greenhouses may contribute to genetic variations in soil microbial populations is very limited. In this study, we obtained and analyzed soil populations of the cosmopolitan fungal pathogen Alternaria alternata in seven greenhouses in Shijiazhuang, northeast China. Our analyses revealed high proportions of isolates being resistant to agricultural triazole fungicides and medical triazole drugs, including cross-resistance to both groups of triazoles. In addition, we found that greenhouse populations of A. alternata located within a few kilometers showed similar levels of genetic differentiation as those separated by over 2,000 km between northeast and southwest China. Our study suggests that greenhouse populations of this and potentially other fungal pathogens represent an important ecological niche and an emerging threat to food security and human health.

authors

  • Yang, Guangzhu
  • Cui, Sai
  • Huang, Wenjing
  • Wang, Shutong
  • Ma, Jun
  • Zhang, Ying
  • Xu, Jianping

publication date

  • June 4, 2024