Home
Scholarly Works
Gauge potentials and vortices in the Fock space of...
Preprint

Gauge potentials and vortices in the Fock space of a pair of periodically driven Bose-Einstein condensates

Abstract

We perform a theoretical study of the coupled dynamics of two species of Bose-Einstein condensates (BECs) in a double well potential where both the tunneling and the interatomic interactions are driven periodically in time. The population difference between the wells of each species gives rise to a two dimensional lattice in Fock space with dimensions given by the number of atoms in each BEC. We use a Floquet analysis to derive an effective Hamiltonian that acts in this Fock space and find that it contains an artificial gauge field. This system simulates noninteracting particles in a tight binding lattice subject to an additional harmonic potential and vector potential. When the intra-species interactions are attractive there is a critical value at which the ground state of the Floquet operator undergoes a transition from a Gaussian state to a quantized vortex state in Fock space. The transition can be quantified in terms of the angular momentum as well as the entanglement entropy of the ground state with both showing sudden jumps as the intra-species interactions become stronger. The stability of the vortex state vanishes in the thermodynamic limit.

Authors

Mumford J; Kamp D; O'Dell DHJ

Publication date

March 30, 2024

Contact the Experts team